BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 51 (11), 3379—3380 (1978)

The Carbon-13 NMR Spectra of Barbituric-acid Derivatives

Shozo Asada and Jujiro Nishijo*

Kobe Women's College of Pharmacy, Higashinada-ku, Kobe 658

(Received December 19, 1977)

Synopsis. The 13 C nuclear magnetic resonance spectra of thirty kinds of barbituric-acid derivatives were measured, and the chemical shifts of each carbon were assigned. The correlation between chemical shifts of the ring skeletal carbon and the pK_a values was examined.

There have been several reports concerning the ¹³C nuclear magnetic resonance (NMR) spectra of barbituric-acid derivatives. Okada et al.1) have measured the ¹³C NMR spectra of some 5-monosubstituted barbituric-acids (I). They pointed out that (I) dissociated by releasing the hydrogen at the 5-position and that there was a good linear correlation between the ¹³C chemical shifts of C-5 and the pK_a values. In 5,5-disubstituted and 1-methyl-5,5-disubstituted barbituric-acids (II) and (III), however, dissociation may be more complicated, as is shown in Chart 1. In order to gain a clew with regard to those dissociation schemes, we tried to assign the chemical shifts of each carbon for (II) and (III) and examined the correlation of the ¹³C shifts of the ring skeletal carbons with the pK_a values of these compounds.

Experimental

Materials. The barbituric-acids used for the measurement of the ¹³C NMR spectra are listed in Table 1. Compounds **2**, **3**, **7**, **9**, **10**, **11**, **13**, **14**, **28**, and **29** were synthesized by the methods described in the literature.^{2,3)} Compound

30 was synthesized by the methylation of 15 with CH₂N₂. The other compounds were those reported in the preceeding paper.⁴⁾

Measurements of the Acid-dissociation Constants and the ^{13}C NMR Spectra of Barbituric-acid Derivatives. The apparent acid-dissociation constants, p K_a , were determined by means of a Hitachi model UV-200 spectrophotometer at 20 °C in an ionic strength of 0.75. The p K_a values of the new compounds were as follows: 2=7.94, 3=7.85, 7=8.14, 9=7.53, 10=8.05, 11=7.77, 13=7.87, 14=7.61, 28=7.85, and 29=7.90. The ^{13}C NMR spectra were measured at room temperature by means of a NEVA NV-21 (22.6 MHz) spectrometer. All the samples were dissolved in dimethyl- d_6 sulfoxide (1M). The chemical shifts were expressed in ppm downfield from tetramethylsilane (TMS).

Results and Discussion

Table 1 shows the 13 C chemical shifts of the ring skeletal carbons, assigned by using the off-resonance technique or by comparing them with the values in the literature. The mean value of the chemical shifts of N-methyl carbon for (III) was given as 27.09 ± 0.25 (n=15).

We attempted to correlate the 13 C shifts with the p K_a values as follows. The results of regression analyses concerning Eq. 1 are summarized in Table 2.

$$pK_a = a_0 + a_1 \delta_c (ring position), \qquad (1)$$

where δ_c indicates the ¹³C shift of the ring skeletal

$$\begin{array}{c} \overset{\circ}{R}_{11} \overset{\circ}{C} \overset{\circ}{C} \overset{\circ}{R}_{1} & \overset{\circ}{C} \overset{\circ}{C} & \overset{\circ}{R}_{1} & \overset{\circ}{C} & \overset{\circ}{C} & \overset{\circ}{N} & \overset{$$

Chart 2.

Table 1. Compound number and ¹³C chemical shift (δ_{C}) in ppm of barbituric-acid derivatives

					$\delta_{\mathrm{C}}^{\mathrm{b})}$		
ompound No.	Substituenta)		Ring			_^_	N-CH ₃
	R_1	$\mathbf{R_2}$	C-2	C-4	C-6	C-5	
II, (R ₃ =	$= R_4 = H$	series			~		
1	Ethyl	Ethyl	150.0	173.	1×2	56.6	
2	Ethyl	Allyl	149.8	172.4×2		55.8	
3	Ethyl	Propyl	149.9	173.1×2		55.9	
4	Ethyl	3-Methylbutyl	149.9	173.	1×2	55.8	
5	Ethyl	1-Methylbutyl	150.1	(173.1)	(172.8)°)	59.3	
6	Ethyl	Cyclohexen-1-yl	150.0	171.	5×2	61.5	
7	Ethyl	Cyclohexyl	150.1	172.	.7×2	59.5	
8	Ethyl	Phenyl	149.9	171	.6×2	60.0	
9	Ethyl	Benzyl	149.4	172.	.5×2	57.8	
10	Ethyl	α-Methylbenzyl	149.4	(172.8)	(171.7)c)	60.1	
11	Ethyl	Cinnamyl	149.3	(172.4)	(171.6)°)	57.7	
12	Allyl	Allyl	149.7	171	9×2	55.1	
13	Propyl	Propyl	149.8	173.2×2		55.2	
14	Benzyl	Benzyl	148.9	172.1×2		59.1	
III, (R,	=CH ₃ ,	R ₄ =H) series					
15 ^d)	Ethyl	Ethyl	149.9	171.8	171.3	56.9	27.1°)
16	Ethyl	Allyl	149.8	171.4	170.8	56.2	27.1
17	Ethyl	Propyl	149.8	171.9	171.3	56.2	27.1
18	Ethyl	3-Methylbutyl	149.8	171.9	171.3	56.1	27.1
19	Ethyl	1-Methylbutyl	150.0	171.8	171.2	59.7	27.1
20	Ethyl	Cyclohexen-1-yl	149.9	170.5	169.8	61.7	27.4
21	Ethyl	Cyclohexyl	150.6	172.1	171.5	60.3	26.8
22	Ethyl	Phenyl	149.8	170.4	169.9	60.3	27.6
23	Ethyl	Benzyl	149.3	171.4	170.8	58.3	27.0
24	Ethyl	α-Methylbenzyl	149.7	172.0	170.5	61.0	27.0
25	Ethyl	Cinnamyl	150.2	171.9	171.2	56.9	27.4
26	Ethyl	Phenylpropyl	150.2	172.4	171.8	56.3	27.2
27	Allyl	Allyl	149.6	170.8	170.1	55.4	27.0
28	Benzyl	Benzyl	149.1	171.5	170.7	59.7	26.8
29	Benzyl	α-Methylbenzyl	149.2	171.4	170.3	61.8	26.6
IV, (R ₃	$= \mathbf{R_4} = \mathbf{C}$	H ₃) series					
30	Ethyl	Ethyl	150.9	171.	4×2	57.4	28.2×

b) Symbol "x2" means twice the intensity. c)

b) Symbol "×2" means twice the intensity. c)
In Compounds 5, 10, and 11, which have no
a) O=C₂

N-C₄

R₂

N-C₄

R₂

N-C₄

R₂

N-methyl group, equivalent signals of carbons at the 4- and 6-positions split off in two. d) The δ_c 171.8 is the signal to C-4, and the δ_c 171.3 is that to C-6, which is situated nearer the N-methyl group. In 1, δ_c 173.1×2 is assigned as the signals to C-4 and C-6.

In 30, these signals appear at a higher field, δ_c 171.4×2. e) The ¹³C signal of the N-methyl group was shown as a quartet in the partial proton-decoupling state.

carbons for (II) and (III), and where a_0 and a_1 are constants. In a series of (II), it was found that the regression of p K_a with δ_c (4 and/or 6 position) was significant at the 5% level concerning the F-test for the variance ratio, as is shown in Eq. 3. On the other hand, the regression of pK_a with $\delta_c(2)$ or of pK_a with $\delta_c(5)$ was less significant, as is shown in Eq. 2 or Eq. 4. Thus, the ionization of (II) may produce (IIa) and/or (IIc). Further, in the (III) series, the regression of pK_a with $\delta_c(4)$ was highly significant,

Table 2. Regression analyses^{a)} between pK_a and δ_{c} of ring carbon for two barbituric-acid DERIVATIVES, (II) AND (III)

Series	<i>a</i> ₀	+ a ₁ (t value)	$\delta_{\mathbf{c}}$	γ Correlation coeff.	Ve Variance	F _{1,n-2} Variance ratio	Equation
II	- 8.06	0.106(0.52)	$\delta_{\rm c}(2)$	0.149	0.066	0.274	2
	-41.4	0.285(2.92*)	$\delta_{\rm c}(4$	0.697	0.038	8.49*	3b)
		a	nd/or 6)			
	9.28	-0.026(0.80)	$\delta_{\rm c}(5)$	0.224	0.064	0.632	4
III	-15.06	0.153(1.09)	$\delta_{\rm c}(2)$	0.291	0.044	1.20	5
	-44.21	0.304(5.36**)	$\delta_{\rm c}(4)$	0.830	0.015	28.8**	6
	-30.25	0.223(3.17**)	$\delta_{\rm c}(6)$	0.666	0.026	10.4**	7
	7.85	0.001(0.02)	$\delta_{\rm e}(5)$	0.006	0.048	0.001	8

a) $pK_a=a_0+a_1\delta_c$ (ring position). b) No. of samples: n=11 (No. 1—No. 14 except Nos. 5, 10, and 11). Symbol ** indicates a substance to be significant at the 1% level, *, to be significant at the 5% level.

as had been expected (Eq. 6), while that of pK_n with $\delta_{c}(2)$ or of p K_{a} with $\delta_{c}(5)$ had little significance (Eq. 5 or Eq. 8). The regression of pK_a with $\delta_c(6)$ was also significant at the 1% level relative to the F-test (Eq. 7). It seems that this result is inconsistent with Chart 1. In this connection, Eriksson et al. 6) have reported that a tetrahedral substrate-hydroxide ion complex of 1methylbarbituric-acid was formed in an alkaline solution. Accordingly, the ionization form (IIIc) shown in Chart 2 may be useful in predicting a good correlation of Eq. 7. A complete explanation must be left to further study because pK_a is related to the ¹³C chemical shifts at the 4 and/or 6 position of 5,5-disubstituted barbituric-acid derivatives.

The authors wish to express their thanks to Miss Makiko Sugiura for the measurement of the ¹³C NMR spectra.

References

- 1) J. Okada and T. Esaki, Yakugaku Zasshi, 93, 1014 (1973).
- 2) a) J. B. Dickey and A. R. Gray, Org. Synth., Coll. Vol. II, 60 (1943); b) G. A. Neville, H. W. Avdovich, and A. W. By, Can. J. Chem., 48, 2274 (1970).
- 3) T. Itai and B. Hashimoto, Eiseishikensho Iho, 61, 11 (1943).
- 4) S. Asada, A. Kashimoto, and T. Yamada, Yakugaku Zasshi, 96, 1169 (1976).
- 5) J. B. Stothers, "Carbon-13 NMR Spectroscopy." Academic Press, New York and London (1972).
- 6) S. O. Eriksson and C. G. Regårdh, Acta Pharm. Suec., **5**, 457 (1968).